48 research outputs found

    Point vortices and polynomials of the Sawada-Kotera and Kaup-Kupershmidt equations

    Full text link
    Rational solutions and special polynomials associated with the generalized K_2 hierarchy are studied. This hierarchy is related to the Sawada-Kotera and Kaup-Kupershmidt equations and some other integrable partial differential equations including the Fordy-Gibbons equation. Differential-difference relations and differential equations satisfied by the polynomials are derived. The relationship between these special polynomials and stationary configurations of point vortices with circulations Gamma and -2Gamma is established. Properties of the polynomials are studied. Differential-difference relations enabling one to construct these polynomials explicitly are derived. Algebraic relations satisfied by the roots of the polynomials are found.Comment: 23 pages, 8 figure

    Expansions of solutions to the equation P₁ÂČ by algorithms of power geometry

    No full text
    Algorithms of Power Geometry allow to find all power expansions of solutions to ordinary differential equations of a rather general type. Among these, there are PainlevÂŽe equations and their generalizations. In the article we demonstrate how to find by these algorithms all power expansions of solutions to the equation P₁ÂČ at the points z = 0 and z = ∞. Two levels of the exponential additions to the expansions of solutions near z = ∞ are computed. We also describe an algorithm of computation of a basis of a minimal lattice containing a given set

    Information decomposition of symbolic sequences

    Full text link
    We developed a non-parametric method of Information Decomposition (ID) of a content of any symbolical sequence. The method is based on the calculation of Shannon mutual information between analyzed and artificial symbolical sequences, and allows the revealing of latent periodicity in any symbolical sequence. We show the stability of the ID method in the case of a large number of random letter changes in an analyzed symbolic sequence. We demonstrate the possibilities of the method, analyzing both poems, and DNA and protein sequences. In DNA and protein sequences we show the existence of many DNA and amino acid sequences with different types and lengths of latent periodicity. The possible origin of latent periodicity for different symbolical sequences is discussed.Comment: 18 pages, 8 figure

    Universality of a double scaling limit near singular edge points in random matrix models

    Full text link
    We consider unitary random matrix ensembles Z_{n,s,t}^{-1}e^{-n tr V_{s,t}(M)}dM on the space of Hermitian n x n matrices M, where the confining potential V_{s,t} is such that the limiting mean density of eigenvalues (as n\to\infty and s,t\to 0) vanishes like a power 5/2 at a (singular) endpoint of its support. The main purpose of this paper is to prove universality of the eigenvalue correlation kernel in a double scaling limit. The limiting kernel is built out of functions associated with a special solution of the P_I^2 equation, which is a fourth order analogue of the Painleve I equation. In order to prove our result, we use the well-known connection between the eigenvalue correlation kernel and the Riemann-Hilbert (RH) problem for orthogonal polynomials, together with the Deift/Zhou steepest descent method to analyze the RH problem asymptotically. The key step in the asymptotic analysis will be the construction of a parametrix near the singular endpoint, for which we use the model RH problem for the special solution of the P_I^2 equation. In addition, the RH method allows us to determine the asymptotics (in a double scaling limit) of the recurrence coefficients of the orthogonal polynomials with respect to the varying weights e^{-nV_{s,t}} on \mathbb{R}. The special solution of the P_I^2 equation pops up in the n^{-2/7}-term of the asymptotics.Comment: 32 pages, 3 figure

    Point vortices and classical orthogonal polynomials

    Full text link
    Stationary equilibria of point vortices with arbitrary choice of circulations in a background flow are studied. Differential equations satisfied by generating polynomials of vortex configurations are derived. It is shown that these equations can be reduced to a single one. It is found that polynomials that are Wronskians of classical orthogonal polynomials solve the latter equation. As a consequence vortex equilibria at a certain choice of background flows can be described with the help of Wronskians of classical orthogonal polynomials.Comment: 20 pages, 12 figure

    Prompt K_short production in pp collisions at sqrt(s)=0.9 TeV

    Get PDF
    The production of K_short mesons in pp collisions at a centre-of-mass energy of 0.9 TeV is studied with the LHCb detector at the Large Hadron Collider. The luminosity of the analysed sample is determined using a novel technique, involving measurements of the beam currents, sizes and positions, and is found to be 6.8 +/- 1.0 microbarn^-1. The differential prompt K_short production cross-section is measured as a function of the K_short transverse momentum and rapidity in the region 0 < pT < 1.6 GeV/c and 2.5 < y < 4.0. The data are found to be in reasonable agreement with previous measurements and generator expectations.Comment: 6+18 pages, 6 figures, updated author lis
    corecore